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Abstract
It is shown that the conformal group of three-dimensional Euclidean space
SO(4, 1) is a maximal group of Lie symmetries of the Seiberg–Witten and
Freund’s equations in R3. Particular explicit solutions which are invariant
under some subgroups of SO(4, 1) are constructed.

PACS numbers: 11.25.Hf, 11.30.Pb, 02.20.Rt

1. Introduction

The role of Seiberg–Witten equations [1] in both high-energy physics and topology is common
knowledge. On one hand, the Seiberg–Witten equations describe the dynamics of twisted
N = 2 supersymmetric Abelian gauge fields coupled to massless monopoles. The weak
coupling limit of this theory is equivalent to the low-energy N = 2 super Yang–Mills theory
in the strongly coupled region of field space [2]. On the other hand, a twisted version of
supersymmetric theories is applicable to a classification of four-dimensional manifolds [3, 4],
as well as three-dimensional ones [5, 6]. New topological invariants defined by moduli space
of Seiberg–Witten equations were found [1, 4].

The particular solutions of Seiberg–Witten equations reduced to three-dimensional flat
space R3 were constructed in [7–9]. Furthermore, the Freund equations were proposed, which
differ from Seiberg–Witten ones in the sign of the quadratic term [9].

This paper is devoted to a construction of group-invariant particular solutions of the
Seiberg–Witten equations and those of Freund. We also include into consideration zero
modes of the three-dimensional massless Dirac operator without magnetic fields (see, for
instance, [10]).
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2. Preliminaries

Consider the equations which include a two-component spinor field ψ and a vector potential
A in R3:

εψ∗σlψ = Hl σl(∂l − iAl)ψ = 0 εlkm∂kAm = Hl (1)

where ε = ±1, 0; l, k,m = 1, 2, 3; σl are the Pauli matrices. For ε = 1, these equations will
be the Seiberg–Witten ones. In the case ε = −1, we will think of the equations (1) as the
Freund equations. For ε = 0, we have the particular case of the zero-mode problem mentioned
above.

The solutions of the second equation (1) are the zero modes of the three-dimensional
massless Dirac operator. The general ansatz of these which depends upon a three-dimensional
vector function was constructed in [11]:

ψ = 1√
2(f + (fn3))

(
f + (fn3)

(fn1) + i(fn2)

)
(2)

A = [∇f]

2f
+

f − (fn3)

2f
∇

(
arctan

(fn2)

(fn1)

)
0 = (∇f) (3)

where f =
√

f2; n1, n2 and n3 are arbitrary orthogonal unit vectors in R3. Strictly speaking,
we ought to define the functions ψ and A on two overlapping regions of space. However, for
our purpose, it is quite enough to deal with solutions (2) and (3) locally.

If we substitute the solution (2) into the first equation of (1) and the solution (3) into
the third equation of (1), we obtain the second-order nonlinear differential equations in three
independent and three dependent variables:

�f +
�(f)
f 2

+ 2εf f = 0 (∇f) = 0 (4)

where �(f) = [∇f 2[∇f]] − (f3[∇f1∇f2] − f2[∇f1∇f3] + f1[∇f2∇f3]) (in short, we denote
f1 = (fn1), f2 = (fn2) and f3 = (fn3)); r is the independent vector and f = f(r) is the
dependent one.

3. Lie symmetries

One of the most useful methods for determining particular explicit solutions to partial
differential equations (4) is to reduce them to ordinary differential equations which are invariant
under some subgroups of the maximal Lie symmetry group of equations (4). For this purpose
we need to construct the infinitesimal Lie algebra generators. Using the methods described in
[12] gives (see appendix A)

L = −[r∇r] − [f∇f] (5)

P = ∇r (6)

K = 2r(r∇r) − r2∇r − 4r(f∇f) + 2[r[f∇f]] (7)

D = (r∇r) − 2(f∇f). (8)

Here

∇r = n1
∂

∂x
+ n2

∂

∂y
+ n3

∂

∂z
∇f = n1

∂

∂f1
+ n2

∂

∂f2
+ n3

∂

∂f3
.
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The commutation relations of generators (5)–(8) are

[Li,Kj ] = εijkKk [Pi,Kj ] = 2(δijD + εijkLk)

[Ki,Kj ] = [Li,D] = 0 [Ki,D] = −Ki [Pi,D] = Pi.

So, we have Lie algebra of the SO(4, 1) group (conformal group of three-dimensional
Euclidean space). Generators L, P, K and D determine infinitesimal rotations, shifts,
inversions and dilatations, respectively. Note in particular that (5)–(8) generate fibre-
preserving transformations, meaning that the transformations in r do not depend on the
coordinates f.

The finite transformations of this group are

rotations: r �→Or f �→Of (9)

shifts : r �→ r + b f �→ f (10)

dilatations: r �→ exp(λ)r f �→ exp(−2λ)f (11)

inversions: r �→ r − r2v
1 − 2(rv) + r2v2

(12)

f �→ (1 − 2(rv) + r2v2)2

(
f +

2

1 + q2
([qf] + [q[qf]])

)
q = [vr]

1 − (vr)

where O is a three-dimensional orthogonal matrix; b and v are arbitrary vector parameters and
λ is a scalar parameter.

Suppose f(r) satisfies the equations (4), so does f̃ ≡ T (g)f(r), where T (g) is an arbitrary
combination of the finite transformations (9)–(12) of the SO(4, 1) group. For pure rotations,
shifts, dilatations and inversions we obtain, respectively,

f̃1 ≡ T (O)f(r) = Of(O−1r)

f̃2 ≡ T (exp(bP))f(r) = f(r − b)

f̃3 ≡ T (exp(λD))f(r) = exp(−2λ)f(exp(−λ)r)

f̃4 ≡ T (exp(vK))f(r) = 1

(1 + 2(rv) + r2v2)2

(
f(r′) +

2

1 + q′2 ([q′f(r′)] + [q′[q′f(r′)]])
)

where

r′ = r + r2v
1 + 2(rv) + r2v2

q′ = [vr]

1 + (vr)
.

Thus, a class of solutions can be associated with the initial particular solution.

4. Group-invariant solutions

Consider, for instance, the solutions which are invariant under the SO(3), SO(2, 1) and E(2)
subgroups of SO(4, 1). These subgroups can be generated by the following combinations of
vector fields (5)–(8):

G1 = (K1 + ςP1)/2 G2 = (K2 + ςP2)/2 G3 = L3 (13)

where ς = ±1, 0. In the cases ς = 1 and ς = −1, vector fields (13) generate the SO(3) and
SO(2, 1) groups, respectively. In the case ς = 0, we have the E(2) group.

Using the methods [13], we find the group-invariant ansatz in the form (see appendix B)

f = �(ρς)

2(rn3)3
(2(rn3)r − (r2 + ς)n3). (14)
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Here ρς and � are group invariants

ρς = r2 + ς

2(rn3)
� = (rn3)

2
√

f 2 − (fn3)2√
r2 − (rn3)2

.

The ansatz (14) reduces the equations (4) to the ordinary differential equations (see
appendix B) for �(ρς) which are compatible if ς = ε. This implies that the Seiberg–Witten
equations admit a SO(3)-invariant solution, but do not admit a solution which is invariant
under the SO(2, 1) or E(2) group. A SO(2, 1)-invariant solution satisfies the Freund equations
only. For the massless Dirac operator without magnetic fields, we have a solution which is
invariant under the E(2) group.

The reduced ordinary differential equations are easily solved and we get

f = ±2(rn3)r − (r2 + ε)n3

4(rn3)3
(
ρ2

ε − ε
)3/2 . (15)

For ε = ς = 0 function (15) reproduces the special case of zero modes of the three-dimensional
Dirac operator without magnetic field [10].

It should be noted that subgroups are determined up to inner automorphisms of the
maximal symmetry group. So, a class of adjoint subgroups can be associated with a subgroup
H: H̃ = gHg−1, where g is an arbitrary element of the SO(4, 1) group.

Consider some adjoint subgroups to the SO(3) group generated by vector fields (13) with
ς = ε = 1. Let the inner automorphism be generated by the element g = exp

(
π
2 (W3 − L3)

)
,

where W3 = (K3 + P3)/2. Then

exp
(π

2
(W3 − L3)

)
Gi exp

(
−π

2
(W3 − L3)

)
= Li

where i = 1, 2, 3. We note that [W3, L3] = 0. So,

exp α(W3 − L3) = exp(αW3) exp(−αL3) = exp(−αL3) exp(αW3).

The one-parameter finite transformations exp(αW3) have the form

r �→ 2r − (2(1 − cos α)(rn3) + (r2 − 1) sin α)n3

r2 + 1 − (r2 − 1) cos α − 2(rn3) sin α
(16)

f �→ (r2 + 1 − (r2 − 1) cos α − 2(rn3) sin α)2

4

(
f +

2

1 + q2
([qf] + [q[qf]])

)
where

q = − (1 − cos α)[n3r]

(1 − cos α)(n3r) − sin α
.

The solution which is invariant under the SO(3) group generated by vector fields L can
be obtained from (15):

f̃ = ±T
(

exp
(π

2
(W3 − L3)

)) 2(rn3)r − (r2 + 1)n3

4(rn3)3
(
ρ2

1 − 1
)3/2 = ∓ r

2|r|3 . (17)

So, we reproduce the well-known monopole-like solution [7, 8].
The next example is the SO(3) group generated by vector fields

exp(−vK)L exp(vK) = L + [vK].

In this case the group-invariant solution has the form

˜̃f = T (exp(vK))f̃ = T (exp(vK))
r

2|r|3 = r + (vr)r + [[vr]r]

2|r + (vr)r + [[vr]r]|3 . (18)
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Thus, the Seiberg–Witten equations admit a class of SO(3)-invariant solutions. In similar
fashion we can obtain a class of SO(2, 1)-invariant solutions satisfying the Freund equations
as well as a class of E(2)-invariant solutions which satisfy the massless Dirac equation without
magnetic fields.

We note in conclusion that solutions which are invariant under a two-parameter subgroups
could be constructed. The most interesting example of these which satisfies the Seiberg–Witten
equations was constructed in [14]:

f = 12

(1 + r2)3
(2[n3r] + 2(n3r)r + (1 − r2)n3).

This solution is invariant under a two-parameter Abelian torus group generated by vector fields
W3 and L3. The group invariants are

ρ = r2 + 1

2
√

r2 − (rn3)2

�1 =
√

r2 − (rn3)2(n3[rf])

�2 =
√

f2(r2 − (rn3)
2)

�3 = (r2 − 1 − 2(rn3)
2)(rf) + (r2 + 1)(rn3)(fn3).

(19)

Substitution of f into �1,�2 and �3 gives

�1 = 3

ρ3
�2 = 3

ρ2
�3 = 0.

However, we were not able to construct group-invariant solutions in general, because
equations (4) reduce to the system of ordinary differential equations for the three unknown
functions. This system requires separate analysis.

5. Conclusions

The conformal group of three-dimensional Euclidean space SO(4, 1) is a maximal group of Lie
symmetries of the Seiberg–Witten and Freund equations in R3. However, the Seiberg–Witten
equations admit a SO(3)-invariant solution, while the SO(2, 1)-invariant solutions satisfy the
Freund equations only. For massless Dirac operator without magnetic fields, we have a
solution which is invariant under E(2) group.

Appendix A

The infinitesimal Lie group transformations have the form [12]

v = ξ
∂

∂x
+ η

∂

∂y
+ ζ

∂

∂z
+ ϕ

∂

∂f1
+ ψ

∂

∂f2
+ χ

∂

∂f3
(A.1)

where ξ , η, ζ , ϕ, ψ and χ depend on r, f.
The second prolongation pr(2)v of vector field (A.1) is

pr(2)v = v + ϕx ∂

∂f1x

+ ϕy ∂

∂f1y

+ ϕy ∂

∂f1z

+ ψx ∂

∂f2x

+ ψy ∂

∂f2y

+ ψy ∂

∂f2z

+ χx ∂

∂f3x

+ χy ∂

∂f3y

+ χy ∂

∂f3z

+ ϕxx ∂

∂f1xx

+ ϕxy ∂

∂f1xy

+ ϕxz ∂

∂f1xz

+ ϕyy ∂

∂f1yy

+ ϕyz ∂

∂f1yz

+ ϕzz ∂

∂f1zz

+ ψxx ∂

∂f2xx
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+ ψxy ∂

∂f2xy

+ ψxz ∂

∂f2xz

+ ψyy ∂

∂f2yy

+ ψyz ∂

∂f2yz

+ ψzz ∂

∂f2zz

+ χxx ∂

∂f3xx

+ χxy ∂

∂f3xy

+ χxz ∂

∂f3xz

+ χyy ∂

∂f3yy

+ χyz ∂

∂f3yz

+ χzz ∂

∂f3zz

where

ϕx = Dx(ϕ − ξf1x − ηf1y − ζf1z) + ξf1xx + ηf1xy + ζf1xz

= ϕx + (ϕf1 − ξx)f1x + ϕf2f2x + ϕf3f3x − ξf1(f1x)
2

− ξf2f1xf2x − ξf3f1xf3x − ηxf1y − ηf1f1xf1y − ηf2f2xf1y

− ηf3f3xf1y − ζxf1z − ζf1f1xf1z − ζf2f2xf1z − ζf3f3xf1z

ϕy = Dy(ϕ − ξf1x − ηf1y − ζf1z) + ξf1xy + ηf1yy + ζf1yz

ϕz = Dz(ϕ − ξf1x − ηf1y − ζf1z) + ξf1xz + ηf1yz + ζf1zz

ψx = Dx(ψ − ξf2x − ηf2y − ζf2z) + ξf2xx + ηf2xy + ζf2xz

· · · · · ·
χz = Dz(χ − ξf3x − ηf3y − ζf3z) + ξf3xz + ηf3yz + ζf3zz

ϕxx = Dxx(ϕ − ξf1x − ηf1y − ζf1z) + ξf1xxx + ηf1xxy + ζf1xxz

ϕxy = Dxy(ϕ − ξf1x − ηf1y − ζf1z) + ξf1xxy + ηf1xyy + ζf1xyz

· · · · · ·
ψxy = Dxy(ψ − ξf2x − ηf2y − ζf2z) + ξf2xxy + ηf2xyy + ζf2xyz

· · · · · ·
χzz = Dzz(χ − ξf3x − ηf3y − ζf3z) + ξf3xzz + ηf3yzz + ζf3zzz.

Here D is the total derivative operator:

DxP(r, f) = ∂P

∂x
+

∂f1

∂x

∂P

∂f1
+

∂f2

∂x

∂P

∂f2
+

∂f3

∂x

∂P

∂f3
= Px + f1xPf1 + f2xPf2 + f3xPf3

for arbitrary function P(r, f).
It is convenient to denote the system of equations (4) by

R(f, fix, fiy , fiz, fixx , fixy , . . . .fiyz, fizz) = 0.

This system is invariant under infinitesimal transformation (A.1) if

pr(2)v[R(f, fix, fiy, fiz, fixx , fixy , . . . , fiyz, fizz)] = 0 (A.2)

for all solution of (4) (i = 1, 2, 3) [12]. The infinitesimal condition (A.2) leads to the
differential constraints

ξfi
= ηfi

= ζfi
= ϕfifj

= ψfifj
= χfifj

= 0

ϕfixx = ϕfixy = · · · = ϕfizz = 0

ψfixx = ψfixy = · · · = ψfizz = 0

χfixx = χfixy = · · · = χfizz = 0

ϕf1 = ψf2 = χf3 = ϕf1 + ψf2 + χf3

f 2
1 + f 2

2 + f 2
3

ξx = ηy = ζz ϕf2 = ξy ϕf3 = ξz ψf1 = ηx ψf3 = ηz χf1 = ζx χf2 = ζy

ξy = −ηx ξy = −ζx ηz = −ζy ϕf1x = −2ξxx ϕf1y = −2ηyy ϕf1z = −2ζzz

ϕf1x = 2ϕf2y = 2ϕf3z ψf2y = 2ψf1x = 2ψf3z χf3z = 2χf1x = 2χf2y ψf3x = ϕf2z

= χf1y = 0 ϕf1 = −2ξx.
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The functions which satisfy these constraints are

ξ = a1(z
2 + y2 − x2)/2 − a2xy − a3xz − a4x + a5y + a6z + a8

η = a2(z
2 + x2 − y2)/2 − a1xy − a3yz − a5x − a4y + a7z + a9

ζ = a3(x
2 + y2 − z2)/2 − a1xz − a2yz − a6x − a7y − a4z + a10

(A.3)

ϕ = a1(2xf1 + yf2 + zf3) + a2(2yf1 − xf2) + a3(2zf1 − xf3) + 2a4f1 + a5f2 + a6f3

ψ = a2(xf1 + 2yf2 + zf3) + a1(2xf2 − yf1) + a3(2zf2 − yf3) + 2a4f2 − a5f1 + a7f3 (A.4)

χ = a3(xf1 + yf2 + 2zf3) + a1(2xf3 − zf1) + a2(2yf3 − zf2) + 2a4f3 − a6f1 − a7f2.

Substituting (A.3) and (A.4) into (A.1) gives

v = −a1/2K1 − a2/2K2 − a3/2K3 − a4D + a5L3 − a6L2 + a7L1 + a8P1 + a9P2 + a10P3.

Appendix B

The vector fields (13) are

G1 = x2 − y2 − z2 + ς

2

∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
− (2xf1 + yf2 + zf3)

∂

∂f1

+ (yf1 − 2xf2)
∂

∂f2
+ (zf1 − 2xf3)

∂

∂f3
(B.1)

G2 = xy
∂

∂x
+

y2 − x2 − z2 + ς

2

∂

∂y
+ yz

∂

∂z
+ (xf2 − 2yf1)

∂

∂f1

− (xf1 + 2yf2 + zf3)
∂

∂f2
+ (zf2 − 2yf3)

∂

∂f3
(B.2)

G3 = y
∂

∂x
− x

∂

∂y
+ f2

∂

∂f1
− f1

∂

∂f2
. (B.3)

Consider the matrices

M =




x2−y2−z2+ς

2 xy xz

xy
y2−x2−z2+ς

2 yz

y −x 0




and M̃ =


x2−y2−z2+ς

2 xy xz −(2xf1 + yf2 + zf3) yf1 − 2xf2 zf1 − 2xf3

xy
y2−x2−z2+ς

2 yz xf2 − 2yf1 −(xf1 + 2yf2 + zf3) zf2 − 2yf3

y −x 0 f2 −f1 0


 .

The solutions which are invariant under group generated by vector fields (B.1)–(B.3) exist if

rank M = rank M̃ < 3. (B.4)

Condition (B.4) is equvalent to

xf2 = yf1 (B.5)

2xzf3 = (z2 − x2 − y2 − ς)f1. (B.6)
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Let x = r⊥ cos θ, y = r⊥ sin θ, z, f1 = f sin θ1 cos(θ + γ ), f2 = f sin θ1 sin(θ + γ ), f3 =
f cos θ1. Then

∂

∂x
= − sin θ

r⊥

∂

∂θ
+ cos θ

∂

∂r⊥
+

sin θ

r⊥

∂

∂γ

∂

∂y
= cos θ

r⊥

∂

∂θ
+ sin θ

∂

∂r⊥
− cos θ

r⊥

∂

∂γ

∂

∂f1
= cos(θ + γ )

(
sin θ1

∂

∂f
+

cos θ1

f

∂

∂θ1

)
− sin(θ + γ )

f sin θ1

∂

∂γ

∂

∂f2
= sin(θ + γ )

(
sin θ1

∂

∂f
+

cos θ1

f

∂

∂θ1

)
+

cos(θ + γ )

f sin θ1

∂

∂γ

∂

∂f3
= cos θ1

∂

∂f
− sin θ1

f

∂

∂θ1
.

Rewrite (B.1)–(B.3) in new coordinates,

G1 = r2
⊥ + z2 − ς

2r⊥
sin θ

∂

∂θ
+

r2
⊥ − z2 + ς

2
cos θ

∂

∂r⊥
+ r⊥z cos θ

∂

∂z

+

(
r2
⊥ − z2 + ς

2r⊥
sin θ + z cot θ1 sin(θ + γ )

)
∂

∂γ

− 2r⊥f cos θ
∂

∂f
− z cos(θ + γ )

∂

∂θ1
(B.7)

G2 = −r2
⊥ + z2 − ς

2r⊥
cos θ

∂

∂θ
+

r2
⊥ − z2 + ς

2
sin θ

∂

∂r⊥
+ r⊥z sin θ

∂

∂z

−
(

r2
⊥ − z2 + ς

2r⊥
cos θ + z cot θ1 cos(θ + γ )

)
∂

∂γ

− 2r⊥f sin θ
∂

∂f
− z sin(θ + γ )

∂

∂θ1
(B.8)

G3 = − ∂

∂θ
. (B.9)

Equations (B.5), (B.6) in these coordinates are

sin γ = 0 (γ = 0) (B.10)

2r⊥z cos θ1 = (
z2 − r2

⊥ − ς
)

sin θ1. (B.11)

The characteristic equations

dz

2r⊥z
= dr⊥

r2
⊥ − z2 + ς

and
dz

z
= −df

2f

give two group invariants

r2
⊥ + z2 + ς

2z
= C1 and f z2 = C2
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respectively. Using (B.10) and (B.11) gives

f1 = f sin θ1 cos θ = xC2

z2
√

C2
1 − ς

f2 = f sin θ1 sin θ = yC2

z2
√

C2
1 − ς

f3 = f cos θ1 =
(
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or
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z2
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2z3

where

ρ ≡ C1 � ≡ C2√
C2
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.

We note that � > 0. Taking into account that
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Equations (4) reduce to the ordinary differential equations

(ρ2 − ς)
∂2�

∂ρ2
+ 5ρ

∂�

∂ρ
+ 3� − �ς

ρ2 − ς
+ 2ε�2

√
ρ2 − ς = 0 (B.12)

(ρ2 − ς)
∂�

∂ρ
+ 3ρ� = 0. (B.13)

Equation (B.13) admits the solution

� = C

2
√

(ρ2 − ς)3
(B.14)

where C is a positive real constant. Substituting (B.14) into (B.12) gives C = 1 and ς = ε.
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